

Thin Film Pyroelectric Linear 128+1 Element Line Sensor Array

With Integrated Read-Out Electronics

Introduction

The Pyreos line sensor array utilises our unique thin-film pyroelectric PZT material to offer class leading resolution and performance across a wide wavelength range at a very affordable price. The ASIC readout electronics output is a multiplexed, amplified and filtered analogue signal for each sensor element. The sensor is housed in a low profile hermetic metal package along with a temperature sensor, and is fitted with the customer's choice of filter window. An additional "+1" sensor element provides higher sensitivity on a discrete wavelength, e.g. for lubrication oil or foodstuffs. The +1 sensor is located for ATR and transmission use.

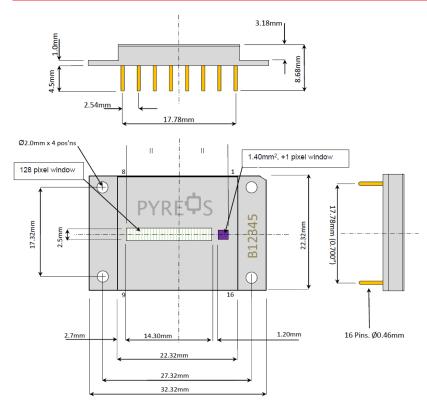
Product Features				
Wavelength range	0.1 to 100 μm ¹			
Operating temperature	Un-cooled operation			
Number of pixels	128 sensor elements +1 sensor element			
128 Pixel array dimensions	60 μm x 500 μm; 100 μm pitch			
+1 sensor area	1 mm ² (33x larger than array pixels)			
Pixel operability	96% with no more than 2 bad in any 10			
Dynamic range	>75 dB			
Scan speed	10-1000 Hz			

Applications				
General IR spectroscopy	Portable, robust spectral engines			
Lubricating oil monitoring	Quality, wear, adulteration,			
Foodstuffs	Constitution, adulteration			
Process monitoring	Wind turbine, petrochemical, pharmaceutical			
Temperature measurement	Non-contact line scanning measurement			
Imaging	Line scanning			

Filters Available

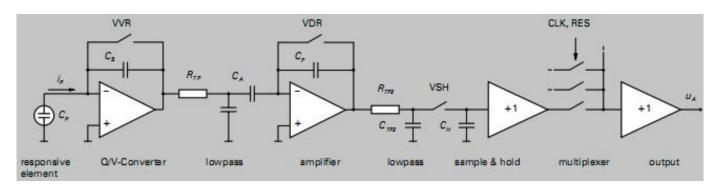
128 Element Array:

- Linear Variable Filters, ranges: 2.5 to 5.0 μ m, 5.5 to 11.0 μ m
- Broadband Filters: AR Si
- +1 Element: Discrete wavelength either within or extending beyond the Linear Variable Filter range.
 - 2.90um / 300nm for water content (PY2004, includes 5.5-11 μm array)
 - 5.75um / 100nm for fat "A" content (PY2075, includes 5.5-11 μm array)


Please inquire for further options.

Please note: the information contained in this document is subject to change without further notification. Pyreos reserves the right to alter the performance and any resulting specification. Pyreos may choose not to supply any engineering sample devices as a commercial product. No responsibility is accepted for any consequential loss incurred. Pyreos Ltd, SMC, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK. Tel: +441316507009, www.pyreos.com

¹Choice of filter windows available


Package Information

No.	Name	Comment				
1.	CLK	Input clock CLK (rising edge)				
2.	RES	Input clock RES (active low)				
3.	VVR	Input clock VVR (active high)				
4.	VDR	Input clock VDR (active high)				
5.	VSH	Input clock VSH (active high)				
6.	N/C	Not Connected				
7.	AVDD	Operating voltage (+5 V)				
8.	VD2	Operating voltage (+2.5 V)				
9.	OUT	Analogue output (128 array)				
10.	AGND	Ground				
11.	OUT 1	Analogue output (+1 element)				
12.	T+	Temperature sensor				
13.	T-	Temperature sensor				
14.	case	Case				
15.	N/C	Not Connected				
16.	DVDD	Operating voltage (+5 V)				

Circuit Diagram - 128 Array Readout

The amplification circuit consists of low-noise preamplifiers for each individual sensor elements, analogue switches and an output amplifier. The pre-amplifiers transform the signal charges measured at each sensor element into a conditioned voltage. The amplified signal is then passed to sample and hold, multiplexer output buffer for the read-out process. The digital inputs are CMOS compatible. A 10k NTC thermistor is integrated within the package to monitor the line sensor temperature.

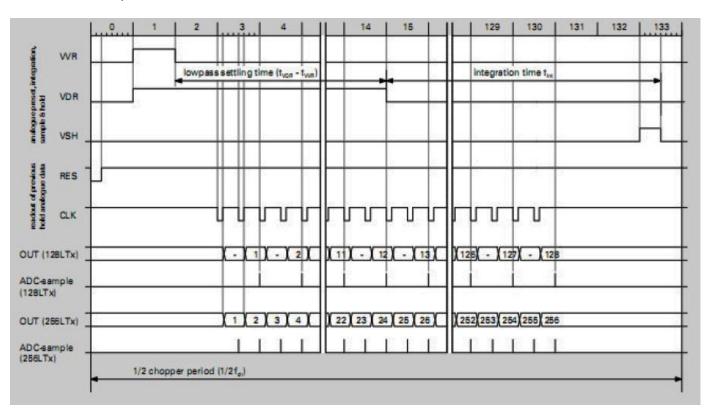
Thermistor is NTC, 1%. For more details check ERTJZEG103FA Datasheet on Industrial Panasonic website.

Order Information

Contact: sales@pyreos.com

Please note: the information contained in this document is subject to change without further notification. Pyreos reserves the right to alter the performance and any resulting specification. Pyreos may choose not to supply any engineering sample devices as a commercial product. No responsibility is accepted for any consequential loss incurred. Pyreos Ltd, SMC, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK. Tel: +441316507009, www.pyreos.com

Clock Parameters - 128 Array Readout


Similar to all pyroelectric sensors, the Pyreos thin-film pyroelectric line sensor array responds to and detects a change in infrared radiation intensity. It therefore requires a pulsed source of infrared radiation for measurement purposes.

Parameter ¹	Relative Value	Min. Values	Recommended Value
Chopping Frequency ² f _{Ch}		10 Hz	128 Hz
Read-out Clock CLK fcLK = 2* fch*268	1/t _{CLK}	5.36 KHz	69 KHz
Reset clock low-impulse duration tres	1/2 t _{CLK}	1.8 µs	7.5 µs
Clock VVR high-impulse duration tvvR	2 t _{CLK}	7.5 µs	30 µs
Clock VDR high-impulse duration t _{VDR}	28 t _{CLK}	200 μs	400 µs
Clock VSH high-impulse duration tvsH	1 tclk	3.5 µs	15 µs

Maximum Settling Time at output tout is 1 μ second

Clock Diagram - 128 Array Readout

Pixel 1 is nearest pin 1 of the device.

Please note: the information contained in this document is subject to change without further notification. Pyreos reserves the right to alter the performance and any resulting specification. Pyreos may choose not to supply any engineering sample devices as a commercial product. No responsibility is accepted for any consequential loss incurred. Pyreos Ltd, SMC, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK. Tel: +441316507009, www.pyreos.com

¹ All values for VDD = 5 V, VD2 = 2.5V

 $^{^{2}}$ $t_{Ch low} = t_{Ch high}$